Учебно-методическое пособие Нижний Новгород




НазваниеУчебно-методическое пособие Нижний Новгород
страница6/11
Дата публикации20.06.2013
Размер0.94 Mb.
ТипУчебно-методическое пособие
www.lit-yaz.ru > Право > Учебно-методическое пособие
1   2   3   4   5   6   7   8   9   10   11

Задачи
Задача 5.1. Из напорного бака вода течет по трубе диаметром d1 = 20 мм и затем вытекает в атмосферу через брандспойт с диаметром выходного отверстия d2 = 10 мм. Избыточное давление воздуха в баке р0 = 0,18 МПа; высота Н = 1,6 м. Пренебрегая потерями энергии, определить скорость течения воды в трубе V1 и на выходе

из насадка V2.

Задача 5.2. Определить скорость движения бензина V и расход Q в сифонном трубопроводе. Нижняя точка оси трубопровода расположена ниже уровня жидкости в питающем резервуаре на расстоянии h = 2,5 м. Внутренний диаметр трубопровода d = 25 мм, плотность бензина ρ = 850 кг/м3. Потерями напора пренебречь.

Задача 5.3. Определить расход жидкости Ж, вытекающей из бака по трубопроводу диаметром d, если избыточное давление воздуха в баке р0, высота уровня Н0, высота подъема жидкости в пьезометре, открытом в атмосферу Н. Потерями энергии пренебречь.

Задача 5.4. Вода движется в трубчатом расходомере в направлении от сечения 1-1 к 2-2. Избыточное давление больше в сечении 1-1 Δр = 25 кПа. Определить расход Q, если внутренний диаметр трубопровода в сечении 1-1 D = 65 мм, а в сечении 2-2 d = 40 мм, разность отметок сечений Δz = 2 м. Потерями напора пренебречь.

Задача 5.5. Керосин движется в трубчатом расходомере в направлении от сечения 1-1 к 2-2. Избыточное давление в сечении 1-1 р1 = 35 кПа. Определить избыточное давление в сечении 2-2, если внутренний диаметр трубопровода в сечении 1-1 D = 50 мм, а в сечении 2-2 d = 35 мм, разность отметок сечений Δz = 1 м, расход Q = 2 л/с. Потерями напора пренебречь.

Задача 5.6. Определить расход воды в трубопроводе, если согласно показаниям ртутного дифференциального манометра h = 30 мм. Плотность ртути ρ = 13600 кг/м3, внутренний диаметр трубопровода D = 80 мм. Потери напора не учитывать.

Задача 5.7. По горизонтальной трубе переменного сечения протекает нефть с расходом Q = 1,3 л/с. Определить разность показаний пьезометров h, если диаметр трубопровода в широком сечении D = 10 см, а в узком d = 5 см. Плотность нефти ρ = 850 кг/м3. Потерями напора пренебречь.

Задача 5.8. Насос с подачей Q = 7,2 м3/ч забирает воду из колодца. Определить наибольший вакуум pвак при входе в насос. Внутренний диаметр трубопровода D = 80 мм, высота установки насоса над уровнем жидкости h = 4 м. Потери напора Δh = 0,5 м.

Задача 5.9. По трубопроводу диаметром D = 150 мм движется вода с расходом 20 л/мин. Определить, пренебрегая потерями напора, разность уровней в жидкостном манометре. Плотность жидкости в манометре ρ = 1300 кг/м3.

Задача 5.10. Нефть движется под напором в трубопроводе квадратного сечения. Определить критическую скорость, при которой будет происходить смена режимов движения жидкости, если сторона квадрата a = 0,05 м, динамический коэффициент вязкости μ = 0,02 Па·с, а плотность нефти ρ = 850 кг/м3.

Задача 5.11. По горизонтальному трубопроводу переменного сечения движется нефть, плотность которой ρ = 850 кг/м3. Диаметр в широком сечении трубопровода d1 =50 мм. Расход жидкости в трубопроводе Q = 0,5 л/с, разность уровней в дифференциальном манометре, заполненном ртутью плотностью ρ = 13600кг/м3, составляет h = 35 мм. Определить диаметр трубопровода в узком сечении. Потерями напора пренебречь.

Задача 5.12. Определить скорость и расход газа с плотностью ρ = 20 кг/м3 в трубопроводе с внутренним диаметром D = 50 мм. В колене манометра находится жидкость плотностью ρж = 1000 кг/м3. Потери напора не учитывать.

Задача 5.13. По горизонтальному трубопроводу переменного сечения движется вода. Из бачка ^ А по трубке, подведенной к трубопроводу, поступает краситель, имеющий плотность ρ = 1300 кг/м3. Определить расход воды в трубопроводе, при котором прекратится подача красителя. Уровень красителя в бачке H = 0,5 м, диаметр трубопровода в широком сечении d1 = 150 мм, в узком – d2 = 100 мм, избыточное давление воды в широком сечении трубопровода составляет 30 кПа. Потерями напора пренебречь.

Задача 5.14. Для условий задачи 4.13 определить, при какой высоте Н прекратится подача красителя. Расход воды в трубопроводе Q = 1,8 м3/мин, диаметр трубопровода в широком сечении d1 = 200 мм, в узком – d2 = 100 мм, абсолютное давление воды в широком сечении трубопровода составляет 150 кПа. Потерями напора пренебречь.

Задача 5.15. Определить давление в сечении трубопровода с диаметром d1 = 0,1 м, если вода в трубке поднялась на высоту h = 3 м, диаметр cуженой части трубопровода d2 = 0,6 м, расход воды в трубопроводе Q = 0,0065 л/с. Потери напора не учитывать.

Задача 5.16. На вертикальной водопроводной трубе постоянного диаметра на расстоянии l = 10 м установлены два манометра. Нижний манометр показывает давление 1,2 кг/см2, а верхний – 0,8 кг/см2. Определить гидравлический уклон и направление движения жидкости.

Задача 5.17. По нагнетательному патрубку диаметром d1 = 200 мм вентилятором подается воздух плотностью ρ = 1,2 кг/м3 с расходом Q = 0,8 м3/с при избыточном давлении р1 = 1 кПа. К патрубку подсоединен диффузор с диаметром выходного сечения d2 = 300 мм. Определить давление воздуха на выходе из диффузора. Изменение плотности воздуха и потери в диффузоре не учитывать.

Задача 5.18. К трубе, по которой движутся дымовые газы плотностью ρ = 0,6 кг/м3, присоединен микроманометр, заполненный спиртом (ρсп = 0,6 кг/м3). Показание шкалы манометра, наклоненной под углом α = 30° к горизонту, l = 15 мм. Определить скорость движения дымовых газов.
Задача 5.19. На вертикальной водопроводной трубе, состоящей из труб диаметром d1 = 27 мм и d2 = 15 мм, установлены два манометра. Нижний манометр показывает давление 1,6 кг/см2, а верхний – 1,2 кг/см2. Определить направление движения воды, гидравлический и пьезометрический уклоны, если расход составляет Q = 0,3 л/с.
Задача 5.20. Поршень диаметром D = 200 мм вытесняет воду по короткому трубопроводу диаметром d = 20 мм в атмосферу. Определить усилие на поршень, если скорость истечения жидкости v = 5 м/с, потери напора hw = 2 м.
Контрольные вопросы и задания
1. Напишите уравнение Бернулли для элементарной струйки движущейся жидкости и объясните, какие параметры оно связывает.

2. Объясните геометрический и энергетический смысл уравнения Бернулли?

3.  Чем отличается уравнение Бернулли для потока реальной жидкости от уравнения, составленного для элементарной струйки идеальной жидкости?

4. Чем обусловлены потери напора в потоке реальной жидкости?

5. Что такое гидродинамический напор? Чему он равен?

6. От чего зависит скоростной напор и чему он равен?
Примерные темы докладов и рефератов
1. Использование уравнения Бернулли в приборах для измерения скорости.

2. Трубчатый расходомер Вентури.

3. Устройство и принцип действия струйного насоса.

6. Гидравлический расчет трубопроводов

Все трубопроводы подразделяются на две категории: простые и сложные. Простой трубопровод не имеет разветвлений на пути движения жидкости, но может представлять последовательное соединение труб разного диаметра. Сложный трубопровод имеет хотя бы одно разветвление и может содержать как параллельные и последовательные соединения труб.

Если в трубопроводе необходимо обеспечить расход жидкости Q, то потребный для этого напор Нпотр. – пьезометрическая высота в начальном сечении определяется по формуле

, (6.1)

где – статический напор, - суммарные потери напора на сопротивление в трубопроводе.

Суммарная потеря напора складывается из потерь на трение по всей длине трубы и местных потерь

= +

Для определения потерь напора на трение в трубах круглого сечения можно использовать формулу Дарси, которую для дальнейших расчетов удобно выразить через расход:

(6.2)

где l – длина рассматриваемого участка трубопровода; d – диаметр трубопровода; λ – безразмерный коэффициент гидравлического трения (коэффициент Дарси).

При турбулентном движении коэффициент трения зависит от числа Рейнольдса и относительной шероховатости трубы ε Значения эквивалентной (абсолютной) шероховатости Δ для различных труб представлены в Приложении 7.

Универсальной формулой, учитывающей одновременно оба фактора является формула Альтшуля:

(6.3)

Для гидравлически гладких труб шероховатость на сопротивление не влияет, и коэффициент сопротивления однозначно определяется числом Рейнольдса:

(6.4)

Местные потери напора определяются по формуле Вейсбаха:

(6.5)

где υ – средняя скорость потока в сечении перед местным сопротивлением ζ – коэффициент местного сопротивления (определяется формой местного сопротивления и его геометрическими параметрами).

C учетом формул Дарси и Вейсбаха,

= + (6.6)

При внезапном расширении трубы потеря напора происходит при вводе жидкости в силовые цилиндры, пневмогидравлические аккумуляторы, фильтры и прочие устройства. Величина этой потери равна скоростному напору потерянной скорости (теорема Борда):



Обозначим - коэффициент местных сопротивлений при расширении трубы, где d1 и d2 – внутренние диаметры сечений трубы перед и за расширением.

В случае внезапного сужения трубопровода коэффициент местных сопротивлений равен

,

где S1 и S2 – площади сечений трубы до и после сужения.

Формула (6.6) справедлива для обоих режимов, однако для ламинарного режима удобнее использовать формулу Пуазейля:

, (6.7)

в которой необходимо заменить фактическую длину трубопровода расчетной, равной

,

где – длина, эквивалентная всем местным гидравлическим сопротивлениям в трубопроводе.

Формула для расчета потребного напора имеет вид

, (6.8)

где для ламинарного режима течения

, m=1; (6.9)

турбулентного режима течения

, m=2 (6.10)

Характеристики потребного напора и суммарных потерь напора трубопроводов = при ламинарном режиме представляет прямые, при турбулентном - параболы.
^ Примеры гидравлических расчетов
Пример 6.1. Расход горячей воды с температурой 95°С через радиатор водяного отопления Q = 0,1 м3/ч. Определить потери давления между сечениями 1-1 и 2-2, если диаметр подводящих трубопроводов d = 0,0125 м, а их общая длина l = 5 м. Принять следующие коэффициенты сопротивления: для поворота ζ1 = 1,45 для крана ζ2 = 0,5, для радиатора ζ3 = 2,1.

Решение:

Суммарные потери давления складываются из потерь давления по длине и местных потерь:



Средняя скорость движения воды в трубопроводе:


Число Рейнольдса определяем с учетом того, что кинематический коэффициент вязкости воды при температуре 95°С ν = 0,3·10-6 м2/с (табл.4.5):



Абсолютная шероховатость стальной трубы (Приложение 7), относительная шероховатость



Таким образом, коэффициент гидравлического трения определяем по формуле:



Вычислим потери давления по длине при плотности воды ρ = 961,9 кг/м3 (табл.4.1):



Местные потери давления складываются из потерь на поворот, в пробковом кране и в радиаторе:



Суммарные потери давления
1   2   3   4   5   6   7   8   9   10   11

Похожие:

Учебно-методическое пособие Нижний Новгород iconУчебно-методическое пособие Нижний Новгород
Мордашов Ю. Ф., Димов Н. Н., Жустев И. В. / Учебно-методическое пособие. Н. Новгород: вгипу, 2010. – 62 с

Учебно-методическое пособие Нижний Новгород iconУчебно-методическое пособие для абитуриентов, выпускников, учителей...
В 75 Воробьёва М. С. Н. В. Гоголь. «Шинель», «Ревизор», «Мёртвые души». Учебно-методическое пособие для абитуриентов, выпускников,...

Учебно-методическое пособие Нижний Новгород iconУчебно-методическое пособие Нижний Новгород
Учебно-методическое пособие предназначено для студентов, обучающихся по специальностям 190603. 65 Сервис транспортных машин и оборудования...

Учебно-методическое пособие Нижний Новгород iconУчебно-методическое пособие Нижний Новгород 2010 министерство образования...
Учебно-методическое пособие предназначено для курсового проектирования по специальности 061000 дисциплине «Основы транспортно-экспедиционного...

Учебно-методическое пособие Нижний Новгород iconУчебно-методическое пособие Нижний Новгород 2010 министерство образования...
Учебно-методическое пособие предназначено для курсового проектирования по специальности 061000 дисциплине «Основы транспортно-экспедиционного...

Учебно-методическое пособие Нижний Новгород iconУчебно-методическое пособие для студентов, обучающихся по специальностям...
Конфликтология: теория и практика управления конфликтами: Учебно-методическое пособие: Для студентов, обучающихся по специальностям...

Учебно-методическое пособие Нижний Новгород iconУчебно-методическое пособие. Н. Новгород: нгпу, 2008. 55 с
Теоретические и прикладные проблемы номинации в курсе «Теория языка»: Учебно-методическое пособие. – Н. Новгород: нгпу, 2008. – 55...

Учебно-методическое пособие Нижний Новгород iconУчебно-методическое пособие Н. Новгород
...

Учебно-методическое пособие Нижний Новгород iconУчебно-методическое пособие специальность 050104 «Безопасность жизнедеятельности»
Учебно-методическое пособие / М. Б. Звонкова, А. В. Неделяева, Ю. В. Егорова, Е. Л. Агеева Н. Новгород: нгпу, 2008. 48 с

Учебно-методическое пособие Нижний Новгород iconПрактикум Нижний Новгород 2011 Министерство образования и науки РФ...
Учебно-методическое пособие предназначено для преподавателей, аспирантов, студентов, занимающихся изучением истории экономики



Образовательный материал



При копировании материала укажите ссылку © 2013
контакты
www.lit-yaz.ru
главная страница